extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×SD16)⋊1C22 = C24.177D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 16 | | (C2xSD16):1C2^2 | 128,1735 |
(C2×SD16)⋊2C22 = C24.178D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):2C2^2 | 128,1736 |
(C2×SD16)⋊3C22 = C24.104D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):3C2^2 | 128,1737 |
(C2×SD16)⋊4C22 = C24.105D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):4C2^2 | 128,1738 |
(C2×SD16)⋊5C22 = C24.106D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):5C2^2 | 128,1739 |
(C2×SD16)⋊6C22 = C4○D4⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):6C2^2 | 128,1740 |
(C2×SD16)⋊7C22 = C42.444D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):7C2^2 | 128,1770 |
(C2×SD16)⋊8C22 = C42.446D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):8C2^2 | 128,1772 |
(C2×SD16)⋊9C22 = C42.14C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):9C2^2 | 128,1773 |
(C2×SD16)⋊10C22 = C42.16C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):10C2^2 | 128,1775 |
(C2×SD16)⋊11C22 = M4(2)⋊14D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):11C2^2 | 128,1787 |
(C2×SD16)⋊12C22 = M4(2)⋊15D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):12C2^2 | 128,1788 |
(C2×SD16)⋊13C22 = M4(2).37D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 16 | 8+ | (C2xSD16):13C2^2 | 128,1800 |
(C2×SD16)⋊14C22 = M4(2).38D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | 8- | (C2xSD16):14C2^2 | 128,1801 |
(C2×SD16)⋊15C22 = M4(2)⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):15C2^2 | 128,1883 |
(C2×SD16)⋊16C22 = M4(2)⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):16C2^2 | 128,1885 |
(C2×SD16)⋊17C22 = M4(2)⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):17C2^2 | 128,1887 |
(C2×SD16)⋊18C22 = C24.126D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):18C2^2 | 128,1925 |
(C2×SD16)⋊19C22 = C24.127D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):19C2^2 | 128,1926 |
(C2×SD16)⋊20C22 = C24.129D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):20C2^2 | 128,1928 |
(C2×SD16)⋊21C22 = C24.130D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):21C2^2 | 128,1929 |
(C2×SD16)⋊22C22 = C42.271D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):22C2^2 | 128,1945 |
(C2×SD16)⋊23C22 = C42.275D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):23C2^2 | 128,1949 |
(C2×SD16)⋊24C22 = C42.406C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):24C2^2 | 128,1952 |
(C2×SD16)⋊25C22 = D8⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):25C2^2 | 128,1996 |
(C2×SD16)⋊26C22 = SD16⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):26C2^2 | 128,1997 |
(C2×SD16)⋊27C22 = SD16⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):27C2^2 | 128,2000 |
(C2×SD16)⋊28C22 = D8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):28C2^2 | 128,2005 |
(C2×SD16)⋊29C22 = SD16⋊1D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):29C2^2 | 128,2006 |
(C2×SD16)⋊30C22 = D8⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 16 | 8+ | (C2xSD16):30C2^2 | 128,2020 |
(C2×SD16)⋊31C22 = D8○SD16 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | 4 | (C2xSD16):31C2^2 | 128,2022 |
(C2×SD16)⋊32C22 = D8⋊6D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 16 | 4 | (C2xSD16):32C2^2 | 128,2023 |
(C2×SD16)⋊33C22 = C42.54C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):33C2^2 | 128,2051 |
(C2×SD16)⋊34C22 = C42.471C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):34C2^2 | 128,2054 |
(C2×SD16)⋊35C22 = C42.473C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):35C2^2 | 128,2056 |
(C2×SD16)⋊36C22 = D8⋊C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 16 | 8+ | (C2xSD16):36C2^2 | 128,2317 |
(C2×SD16)⋊37C22 = C4.C25 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | 8- | (C2xSD16):37C2^2 | 128,2318 |
(C2×SD16)⋊38C22 = C23⋊4SD16 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):38C2^2 | 128,1919 |
(C2×SD16)⋊39C22 = C24.121D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):39C2^2 | 128,1920 |
(C2×SD16)⋊40C22 = C24.123D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):40C2^2 | 128,1922 |
(C2×SD16)⋊41C22 = C24.124D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):41C2^2 | 128,1923 |
(C2×SD16)⋊42C22 = C42.266D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):42C2^2 | 128,1940 |
(C2×SD16)⋊43C22 = C42.269D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):43C2^2 | 128,1943 |
(C2×SD16)⋊44C22 = C42.408C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):44C2^2 | 128,1954 |
(C2×SD16)⋊45C22 = C42.410C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):45C2^2 | 128,1956 |
(C2×SD16)⋊46C22 = D8⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):46C2^2 | 128,2004 |
(C2×SD16)⋊47C22 = SD16⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):47C2^2 | 128,2007 |
(C2×SD16)⋊48C22 = D8⋊12D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):48C2^2 | 128,2012 |
(C2×SD16)⋊49C22 = D4×SD16 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):49C2^2 | 128,2013 |
(C2×SD16)⋊50C22 = D4⋊7SD16 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):50C2^2 | 128,2027 |
(C2×SD16)⋊51C22 = C42.462C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):51C2^2 | 128,2029 |
(C2×SD16)⋊52C22 = C42.41C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):52C2^2 | 128,2038 |
(C2×SD16)⋊53C22 = C42.45C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16):53C2^2 | 128,2042 |
(C2×SD16)⋊54C22 = C2×C8⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16):54C2^2 | 128,1783 |
(C2×SD16)⋊55C22 = C24.110D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):55C2^2 | 128,1786 |
(C2×SD16)⋊56C22 = C2×D4.3D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):56C2^2 | 128,1796 |
(C2×SD16)⋊57C22 = M4(2).10C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | 4 | (C2xSD16):57C2^2 | 128,1799 |
(C2×SD16)⋊58C22 = C2×C8⋊3D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16):58C2^2 | 128,1880 |
(C2×SD16)⋊59C22 = C22×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):59C2^2 | 128,2310 |
(C2×SD16)⋊60C22 = C22×C8.C22 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16):60C2^2 | 128,2311 |
(C2×SD16)⋊61C22 = C2×D8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):61C2^2 | 128,2312 |
(C2×SD16)⋊62C22 = C2×D4○D8 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):62C2^2 | 128,2313 |
(C2×SD16)⋊63C22 = C2×D4○SD16 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):63C2^2 | 128,2314 |
(C2×SD16)⋊64C22 = C8.C24 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | 4 | (C2xSD16):64C2^2 | 128,2316 |
(C2×SD16)⋊65C22 = C2×C22⋊SD16 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):65C2^2 | 128,1729 |
(C2×SD16)⋊66C22 = C2×Q8⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16):66C2^2 | 128,1730 |
(C2×SD16)⋊67C22 = C2×D4⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16):67C2^2 | 128,1732 |
(C2×SD16)⋊68C22 = C2×D4.7D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16):68C2^2 | 128,1733 |
(C2×SD16)⋊69C22 = C24.103D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):69C2^2 | 128,1734 |
(C2×SD16)⋊70C22 = D4.(C2×D4) | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):70C2^2 | 128,1741 |
(C2×SD16)⋊71C22 = (C2×D4)⋊21D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):71C2^2 | 128,1744 |
(C2×SD16)⋊72C22 = C2×D4.2D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16):72C2^2 | 128,1763 |
(C2×SD16)⋊73C22 = C2×C4⋊SD16 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16):73C2^2 | 128,1764 |
(C2×SD16)⋊74C22 = C42.18C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):74C2^2 | 128,1777 |
(C2×SD16)⋊75C22 = C2×C8⋊8D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16):75C2^2 | 128,1779 |
(C2×SD16)⋊76C22 = C24.144D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):76C2^2 | 128,1782 |
(C2×SD16)⋊77C22 = C2×C8⋊5D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16):77C2^2 | 128,1875 |
(C2×SD16)⋊78C22 = C2×C8.12D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16):78C2^2 | 128,1878 |
(C2×SD16)⋊79C22 = M4(2)⋊10D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):79C2^2 | 128,1886 |
(C2×SD16)⋊80C22 = D8⋊10D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):80C2^2 | 128,1999 |
(C2×SD16)⋊81C22 = SD16⋊10D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16):81C2^2 | 128,2014 |
(C2×SD16)⋊82C22 = C22×C4○D8 | φ: trivial image | 64 | | (C2xSD16):82C2^2 | 128,2309 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×SD16).1C22 = Q8.(C2×D4) | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).1C2^2 | 128,1743 |
(C2×SD16).2C22 = C42.211D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).2C2^2 | 128,1768 |
(C2×SD16).3C22 = C42.212D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).3C2^2 | 128,1769 |
(C2×SD16).4C22 = C42.445D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).4C2^2 | 128,1771 |
(C2×SD16).5C22 = C42.15C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).5C2^2 | 128,1774 |
(C2×SD16).6C22 = C42.17C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).6C2^2 | 128,1776 |
(C2×SD16).7C22 = C42.19C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).7C2^2 | 128,1778 |
(C2×SD16).8C22 = M4(2)⋊16D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).8C2^2 | 128,1794 |
(C2×SD16).9C22 = M4(2)⋊17D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).9C2^2 | 128,1795 |
(C2×SD16).10C22 = C42.228D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).10C2^2 | 128,1842 |
(C2×SD16).11C22 = C42.229D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).11C2^2 | 128,1843 |
(C2×SD16).12C22 = C42.230D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).12C2^2 | 128,1844 |
(C2×SD16).13C22 = C42.232D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).13C2^2 | 128,1846 |
(C2×SD16).14C22 = C42.233D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).14C2^2 | 128,1847 |
(C2×SD16).15C22 = C42.234D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).15C2^2 | 128,1848 |
(C2×SD16).16C22 = C42.235D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).16C2^2 | 128,1849 |
(C2×SD16).17C22 = C42.352C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).17C2^2 | 128,1850 |
(C2×SD16).18C22 = C42.353C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).18C2^2 | 128,1851 |
(C2×SD16).19C22 = C42.358C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).19C2^2 | 128,1856 |
(C2×SD16).20C22 = M4(2)⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).20C2^2 | 128,1884 |
(C2×SD16).21C22 = M4(2).20D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).21C2^2 | 128,1888 |
(C2×SD16).22C22 = C42.386C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).22C2^2 | 128,1906 |
(C2×SD16).23C22 = C42.387C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).23C2^2 | 128,1907 |
(C2×SD16).24C22 = C42.390C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).24C2^2 | 128,1910 |
(C2×SD16).25C22 = C42.391C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).25C2^2 | 128,1911 |
(C2×SD16).26C22 = C42.257D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).26C2^2 | 128,1912 |
(C2×SD16).27C22 = C42.258D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).27C2^2 | 128,1913 |
(C2×SD16).28C22 = C42.259D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).28C2^2 | 128,1914 |
(C2×SD16).29C22 = C42.260D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).29C2^2 | 128,1915 |
(C2×SD16).30C22 = C4.162+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).30C2^2 | 128,1933 |
(C2×SD16).31C22 = C4.182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).31C2^2 | 128,1935 |
(C2×SD16).32C22 = C42.272D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).32C2^2 | 128,1946 |
(C2×SD16).33C22 = C42.273D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).33C2^2 | 128,1947 |
(C2×SD16).34C22 = C42.274D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).34C2^2 | 128,1948 |
(C2×SD16).35C22 = C42.276D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).35C2^2 | 128,1950 |
(C2×SD16).36C22 = C42.277D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).36C2^2 | 128,1951 |
(C2×SD16).37C22 = C42.407C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).37C2^2 | 128,1953 |
(C2×SD16).38C22 = C42.409C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).38C2^2 | 128,1955 |
(C2×SD16).39C22 = C42.411C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).39C2^2 | 128,1957 |
(C2×SD16).40C22 = C42.299D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).40C2^2 | 128,1983 |
(C2×SD16).41C22 = C42.300D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).41C2^2 | 128,1984 |
(C2×SD16).42C22 = C42.302D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).42C2^2 | 128,1986 |
(C2×SD16).43C22 = C42.304D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).43C2^2 | 128,1988 |
(C2×SD16).44C22 = C4.2- 1+4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).44C2^2 | 128,1989 |
(C2×SD16).45C22 = C42.27C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).45C2^2 | 128,1992 |
(C2×SD16).46C22 = C42.29C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).46C2^2 | 128,1994 |
(C2×SD16).47C22 = SD16⋊6D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).47C2^2 | 128,1998 |
(C2×SD16).48C22 = Q16⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).48C2^2 | 128,2002 |
(C2×SD16).49C22 = Q16⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).49C2^2 | 128,2003 |
(C2×SD16).50C22 = Q16⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).50C2^2 | 128,2009 |
(C2×SD16).51C22 = D8.13D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | 8- | (C2xSD16).51C2^2 | 128,2021 |
(C2×SD16).52C22 = C42.43C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).52C2^2 | 128,2040 |
(C2×SD16).53C22 = C42.44C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).53C2^2 | 128,2041 |
(C2×SD16).54C22 = C42.46C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).54C2^2 | 128,2043 |
(C2×SD16).55C22 = C42.48C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).55C2^2 | 128,2045 |
(C2×SD16).56C22 = C42.49C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).56C2^2 | 128,2046 |
(C2×SD16).57C22 = C42.50C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).57C2^2 | 128,2047 |
(C2×SD16).58C22 = C42.55C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).58C2^2 | 128,2052 |
(C2×SD16).59C22 = C42.56C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).59C2^2 | 128,2053 |
(C2×SD16).60C22 = C42.476C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).60C2^2 | 128,2059 |
(C2×SD16).61C22 = C42.479C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).61C2^2 | 128,2062 |
(C2×SD16).62C22 = C42.482C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).62C2^2 | 128,2065 |
(C2×SD16).63C22 = C42.57C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).63C2^2 | 128,2075 |
(C2×SD16).64C22 = C42.60C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).64C2^2 | 128,2078 |
(C2×SD16).65C22 = C42.62C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).65C2^2 | 128,2080 |
(C2×SD16).66C22 = C42.64C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).66C2^2 | 128,2082 |
(C2×SD16).67C22 = C42.508C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).67C2^2 | 128,2099 |
(C2×SD16).68C22 = C42.509C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).68C2^2 | 128,2100 |
(C2×SD16).69C22 = C42.511C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).69C2^2 | 128,2102 |
(C2×SD16).70C22 = C42.512C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).70C2^2 | 128,2103 |
(C2×SD16).71C22 = C42.513C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).71C2^2 | 128,2104 |
(C2×SD16).72C22 = C42.516C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).72C2^2 | 128,2107 |
(C2×SD16).73C22 = C42.517C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).73C2^2 | 128,2108 |
(C2×SD16).74C22 = C42.518C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).74C2^2 | 128,2109 |
(C2×SD16).75C22 = C42.72C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).75C2^2 | 128,2129 |
(C2×SD16).76C22 = C42.73C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).76C2^2 | 128,2130 |
(C2×SD16).77C22 = C42.75C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).77C2^2 | 128,2132 |
(C2×SD16).78C22 = C42.532C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).78C2^2 | 128,2134 |
(C2×SD16).79C22 = C42.533C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).79C2^2 | 128,2135 |
(C2×SD16).80C22 = C4.2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).80C2^2 | 128,1930 |
(C2×SD16).81C22 = C4.152+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 32 | | (C2xSD16).81C2^2 | 128,1932 |
(C2×SD16).82C22 = C4.192+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).82C2^2 | 128,1936 |
(C2×SD16).83C22 = C42.264D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).83C2^2 | 128,1938 |
(C2×SD16).84C22 = C42.265D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).84C2^2 | 128,1939 |
(C2×SD16).85C22 = C42.268D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).85C2^2 | 128,1942 |
(C2×SD16).86C22 = C42.270D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).86C2^2 | 128,1944 |
(C2×SD16).87C22 = C42.294D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).87C2^2 | 128,1978 |
(C2×SD16).88C22 = C42.295D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).88C2^2 | 128,1979 |
(C2×SD16).89C22 = C42.296D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).89C2^2 | 128,1980 |
(C2×SD16).90C22 = C42.298D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).90C2^2 | 128,1982 |
(C2×SD16).91C22 = C42.25C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).91C2^2 | 128,1990 |
(C2×SD16).92C22 = C42.30C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).92C2^2 | 128,1995 |
(C2×SD16).93C22 = Q16⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).93C2^2 | 128,2010 |
(C2×SD16).94C22 = SD16⋊11D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).94C2^2 | 128,2016 |
(C2×SD16).95C22 = Q16⋊12D4 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).95C2^2 | 128,2017 |
(C2×SD16).96C22 = C42.465C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).96C2^2 | 128,2032 |
(C2×SD16).97C22 = C42.468C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).97C2^2 | 128,2035 |
(C2×SD16).98C22 = C42.469C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).98C2^2 | 128,2036 |
(C2×SD16).99C22 = C42.42C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).99C2^2 | 128,2039 |
(C2×SD16).100C22 = C42.51C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).100C2^2 | 128,2048 |
(C2×SD16).101C22 = C42.52C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).101C2^2 | 128,2049 |
(C2×SD16).102C22 = Q8⋊9SD16 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).102C2^2 | 128,2124 |
(C2×SD16).103C22 = C42.527C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).103C2^2 | 128,2125 |
(C2×SD16).104C22 = C42.530C23 | φ: C22/C1 → C22 ⊆ Out C2×SD16 | 64 | | (C2xSD16).104C2^2 | 128,2128 |
(C2×SD16).105C22 = C2×SD16⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).105C2^2 | 128,1672 |
(C2×SD16).106C22 = C42.383D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).106C2^2 | 128,1675 |
(C2×SD16).107C22 = C4×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16).107C2^2 | 128,1676 |
(C2×SD16).108C22 = C4×C8.C22 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).108C2^2 | 128,1677 |
(C2×SD16).109C22 = C42.275C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16).109C2^2 | 128,1678 |
(C2×SD16).110C22 = C42.276C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).110C2^2 | 128,1679 |
(C2×SD16).111C22 = C42.278C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16).111C2^2 | 128,1681 |
(C2×SD16).112C22 = C42.280C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).112C2^2 | 128,1683 |
(C2×SD16).113C22 = (C2×C8)⋊14D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).113C2^2 | 128,1793 |
(C2×SD16).114C22 = C2×C8.2D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).114C2^2 | 128,1881 |
(C2×SD16).115C22 = C42.247D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).115C2^2 | 128,1882 |
(C2×SD16).116C22 = C42.255D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).116C2^2 | 128,1903 |
(C2×SD16).117C22 = C42.256D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).117C2^2 | 128,1904 |
(C2×SD16).118C22 = SD16⋊8D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).118C2^2 | 128,2001 |
(C2×SD16).119C22 = SD16⋊3D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).119C2^2 | 128,2008 |
(C2×SD16).120C22 = C42.492C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).120C2^2 | 128,2083 |
(C2×SD16).121C22 = C42.494C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).121C2^2 | 128,2085 |
(C2×SD16).122C22 = C42.498C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).122C2^2 | 128,2089 |
(C2×SD16).123C22 = SD16⋊Q8 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).123C2^2 | 128,2117 |
(C2×SD16).124C22 = SD16⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).124C2^2 | 128,2118 |
(C2×SD16).125C22 = SD16⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).125C2^2 | 128,2120 |
(C2×SD16).126C22 = C42.74C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).126C2^2 | 128,2131 |
(C2×SD16).127C22 = C42.531C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).127C2^2 | 128,2133 |
(C2×SD16).128C22 = C2×Q8○D8 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).128C2^2 | 128,2315 |
(C2×SD16).129C22 = (C2×Q8)⋊16D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16).129C2^2 | 128,1742 |
(C2×SD16).130C22 = (C2×Q8)⋊17D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).130C2^2 | 128,1745 |
(C2×SD16).131C22 = C2×D4.D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).131C2^2 | 128,1762 |
(C2×SD16).132C22 = C2×Q8.D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).132C2^2 | 128,1766 |
(C2×SD16).133C22 = C42.443D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).133C2^2 | 128,1767 |
(C2×SD16).134C22 = (C2×C8)⋊11D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16).134C2^2 | 128,1789 |
(C2×SD16).135C22 = (C2×C8)⋊13D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).135C2^2 | 128,1792 |
(C2×SD16).136C22 = C42.222D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16).136C2^2 | 128,1833 |
(C2×SD16).137C22 = C42.384D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).137C2^2 | 128,1834 |
(C2×SD16).138C22 = C42.223D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).138C2^2 | 128,1835 |
(C2×SD16).139C22 = C42.225D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16).139C2^2 | 128,1837 |
(C2×SD16).140C22 = C42.450D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).140C2^2 | 128,1838 |
(C2×SD16).141C22 = C42.451D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).141C2^2 | 128,1839 |
(C2×SD16).142C22 = C42.226D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).142C2^2 | 128,1840 |
(C2×SD16).143C22 = C42.354C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).143C2^2 | 128,1852 |
(C2×SD16).144C22 = C42.355C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).144C2^2 | 128,1853 |
(C2×SD16).145C22 = C42.357C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16).145C2^2 | 128,1855 |
(C2×SD16).146C22 = C42.359C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).146C2^2 | 128,1857 |
(C2×SD16).147C22 = C42.360C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).147C2^2 | 128,1858 |
(C2×SD16).148C22 = C42.360D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).148C2^2 | 128,1879 |
(C2×SD16).149C22 = C42.365D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).149C2^2 | 128,1899 |
(C2×SD16).150C22 = C42.308D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).150C2^2 | 128,1900 |
(C2×SD16).151C22 = C42.385C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).151C2^2 | 128,1905 |
(C2×SD16).152C22 = D8⋊13D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).152C2^2 | 128,2015 |
(C2×SD16).153C22 = Q16⋊13D4 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).153C2^2 | 128,2019 |
(C2×SD16).154C22 = C42.461C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16).154C2^2 | 128,2028 |
(C2×SD16).155C22 = D4⋊8SD16 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).155C2^2 | 128,2030 |
(C2×SD16).156C22 = C42.466C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).156C2^2 | 128,2033 |
(C2×SD16).157C22 = C42.467C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).157C2^2 | 128,2034 |
(C2×SD16).158C22 = C42.470C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).158C2^2 | 128,2037 |
(C2×SD16).159C22 = C42.472C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 32 | | (C2xSD16).159C2^2 | 128,2055 |
(C2×SD16).160C22 = C42.475C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).160C2^2 | 128,2058 |
(C2×SD16).161C22 = C42.478C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).161C2^2 | 128,2061 |
(C2×SD16).162C22 = C42.480C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).162C2^2 | 128,2063 |
(C2×SD16).163C22 = C42.481C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).163C2^2 | 128,2064 |
(C2×SD16).164C22 = D4⋊9SD16 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).164C2^2 | 128,2067 |
(C2×SD16).165C22 = C42.486C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).165C2^2 | 128,2069 |
(C2×SD16).166C22 = C42.489C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).166C2^2 | 128,2072 |
(C2×SD16).167C22 = Q8⋊7SD16 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).167C2^2 | 128,2091 |
(C2×SD16).168C22 = C42.501C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).168C2^2 | 128,2092 |
(C2×SD16).169C22 = C42.502C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).169C2^2 | 128,2093 |
(C2×SD16).170C22 = Q8⋊8SD16 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).170C2^2 | 128,2094 |
(C2×SD16).171C22 = C42.505C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).171C2^2 | 128,2096 |
(C2×SD16).172C22 = C42.506C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).172C2^2 | 128,2097 |
(C2×SD16).173C22 = C42.510C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).173C2^2 | 128,2101 |
(C2×SD16).174C22 = C42.514C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).174C2^2 | 128,2105 |
(C2×SD16).175C22 = C42.528C23 | φ: C22/C2 → C2 ⊆ Out C2×SD16 | 64 | | (C2xSD16).175C2^2 | 128,2126 |
(C2×SD16).176C22 = C2×C4×SD16 | φ: trivial image | 64 | | (C2xSD16).176C2^2 | 128,1669 |
(C2×SD16).177C22 = C4×C4○D8 | φ: trivial image | 64 | | (C2xSD16).177C2^2 | 128,1671 |
(C2×SD16).178C22 = C42.281C23 | φ: trivial image | 64 | | (C2xSD16).178C2^2 | 128,1684 |
(C2×SD16).179C22 = Q8×SD16 | φ: trivial image | 64 | | (C2xSD16).179C2^2 | 128,2111 |
(C2×SD16).180C22 = SD16⋊4Q8 | φ: trivial image | 64 | | (C2xSD16).180C2^2 | 128,2113 |